ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.16826
22
3

An Attentional Recurrent Neural Network for Occlusion-Aware Proactive Anomaly Detection in Field Robot Navigation

28 September 2023
Jihun Han
Tianchen Ji
Yoonsang Lee
Katherine Driggs-Campbell
ArXivPDFHTML
Abstract

The use of mobile robots in unstructured environments like the agricultural field is becoming increasingly common. The ability for such field robots to proactively identify and avoid failures is thus crucial for ensuring efficiency and avoiding damage. However, the cluttered field environment introduces various sources of noise (such as sensor occlusions) that make proactive anomaly detection difficult. Existing approaches can show poor performance in sensor occlusion scenarios as they typically do not explicitly model occlusions and only leverage current sensory inputs. In this work, we present an attention-based recurrent neural network architecture for proactive anomaly detection that fuses current sensory inputs and planned control actions with a latent representation of prior robot state. We enhance our model with an explicitly-learned model of sensor occlusion that is used to modulate the use of our latent representation of prior robot state. Our method shows improved anomaly detection performance and enables mobile field robots to display increased resilience to predicting false positives regarding navigation failure during periods of sensor occlusion, particularly in cases where all sensors are briefly occluded. Our code is available at: https://github.com/andreschreiber/roar

View on arXiv
Comments on this paper