ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.16515
21
5

Latent Noise Segmentation: How Neural Noise Leads to the Emergence of Segmentation and Grouping

28 September 2023
Vincent Mallet
Zhengqing Wu
M. Ovsjanikov
ArXivPDFHTML
Abstract

Humans are able to segment images effortlessly without supervision using perceptual grouping. In this work, we propose a counter-intuitive computational approach to solving unsupervised perceptual grouping and segmentation: that they arise \textit{because} of neural noise, rather than in spite of it. We (1) mathematically demonstrate that under realistic assumptions, neural noise can be used to separate objects from each other; (2) that adding noise in a DNN enables the network to segment images even though it was never trained on any segmentation labels; and (3) that segmenting objects using noise results in segmentation performance that aligns with the perceptual grouping phenomena observed in humans, and is sample-efficient. We introduce the Good Gestalt (GG) datasets -- six datasets designed to specifically test perceptual grouping, and show that our DNN models reproduce many important phenomena in human perception, such as illusory contours, closure, continuity, proximity, and occlusion. Finally, we (4) show that our model improves performance on our GG datasets compared to other tested unsupervised models by 24.9%24.9\%24.9%. Together, our results suggest a novel unsupervised segmentation method requiring few assumptions, a new explanation for the formation of perceptual grouping, and a novel potential benefit of neural noise.

View on arXiv
Comments on this paper