ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.16048
22
2

Advancing Acoustic Howling Suppression through Recursive Training of Neural Networks

27 September 2023
Huatian Zhang
Yixuan Zhang
Meng Yu
Dong Yu
ArXivPDFHTML
Abstract

In this paper, we introduce a novel training framework designed to comprehensively address the acoustic howling issue by examining its fundamental formation process. This framework integrates a neural network (NN) module into the closed-loop system during training with signals generated recursively on the fly to closely mimic the streaming process of acoustic howling suppression (AHS). The proposed recursive training strategy bridges the gap between training and real-world inference scenarios, marking a departure from previous NN-based methods that typically approach AHS as either noise suppression or acoustic echo cancellation. Within this framework, we explore two methodologies: one exclusively relying on NN and the other combining NN with the traditional Kalman filter. Additionally, we propose strategies, including howling detection and initialization using pre-trained offline models, to bolster trainability and expedite the training process. Experimental results validate that this framework offers a substantial improvement over previous methodologies for acoustic howling suppression.

View on arXiv
Comments on this paper