ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13989
23
24

A Novel Approach for Effective Multi-View Clustering with Information-Theoretic Perspective

25 September 2023
Chenhang Cui
Yazhou Ren
Jingyu Pu
Jiawei Li
X. Pu
Tianyi Wu
Yutao Shi
Lifang He
ArXivPDFHTML
Abstract

Multi-view clustering (MVC) is a popular technique for improving clustering performance using various data sources. However, existing methods primarily focus on acquiring consistent information while often neglecting the issue of redundancy across multiple views. This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint. Our proposed method consists of two parts. Firstly, we develop a simple and reliable multi-view clustering method SCMVC (simple consistent multi-view clustering) that employs variational analysis to generate consistent information. Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views. The proposed SUMVC method offers a promising solution to the problem of multi-view clustering and provides a new perspective for analyzing multi-view data. To verify the effectiveness of our model, we conducted a theoretical analysis based on the Bayes Error Rate, and experiments on multiple multi-view datasets demonstrate the superior performance of SUMVC.

View on arXiv
Comments on this paper