ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13444
17
4

Moving Target Defense based Secured Network Slicing System in the O-RAN Architecture

23 September 2023
Mojdeh Karbalaee Motalleb
Chafika Benzaid
T. Taleb
V. Shah-Mansouri
ArXivPDFHTML
Abstract

The open radio access network (O-RAN) architecture's native virtualization and embedded intelligence facilitate RAN slicing and enable comprehensive end-to-end services in post-5G networks. However, any vulnerabilities could harm security. Therefore, artificial intelligence (AI) and machine learning (ML) security threats can even threaten O-RAN benefits. This paper proposes a novel approach to estimating the optimal number of predefined VNFs for each slice while addressing secure AI/ML methods for dynamic service admission control and power minimization in the O-RAN architecture. We solve this problem on two-time scales using mathematical methods for determining the predefined number of VNFs on a large time scale and the proximal policy optimization (PPO), a Deep Reinforcement Learning algorithm, for solving dynamic service admission control and power minimization for different slices on a small-time scale. To secure the ML system for O-RAN, we implement a moving target defense (MTD) strategy to prevent poisoning attacks by adding uncertainty to the system. Our experimental results show that the proposed PPO-based service admission control approach achieves an admission rate above 80\% and that the MTD strategy effectively strengthens the robustness of the PPO method against adversarial attacks.

View on arXiv
Comments on this paper