ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13373
12
0

Asca: less audio data is more insightful

23 September 2023
Xiang Li
Jing Chen
Chao Li
Hongwu Lv
ArXivPDFHTML
Abstract

Audio recognition in specialized areas such as birdsong and submarine acoustics faces challenges in large-scale pre-training due to the limitations in available samples imposed by sampling environments and specificity requirements. While the Transformer model excels in audio recognition, its dependence on vast amounts of data becomes restrictive in resource-limited settings. Addressing this, we introduce the Audio Spectrogram Convolution Attention (ASCA) based on CoAtNet, integrating a Transformer-convolution hybrid architecture, novel network design, and attention techniques, further augmented with data enhancement and regularization strategies. On the BirdCLEF2023 and AudioSet(Balanced), ASCA achieved accuracies of 81.2% and 35.1%, respectively, significantly outperforming competing methods. The unique structure of our model enriches output, enabling generalization across various audio detection tasks. Our code can be found at https://github.com/LeeCiang/ASCA.

View on arXiv
Comments on this paper