ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.12010
14
16

Convolution and Attention Mixer for Synthetic Aperture Radar Image Change Detection

21 September 2023
Haopeng Zhang
Zijing Lin
Feng Gao
Junyu Dong
Q. Du
Hengchao Li
ArXivPDFHTML
Abstract

Synthetic aperture radar (SAR) image change detection is a critical task and has received increasing attentions in the remote sensing community. However, existing SAR change detection methods are mainly based on convolutional neural networks (CNNs), with limited consideration of global attention mechanism. In this letter, we explore Transformer-like architecture for SAR change detection to incorporate global attention. To this end, we propose a convolution and attention mixer (CAMixer). First, to compensate the inductive bias for Transformer, we combine self-attention with shift convolution in a parallel way. The parallel design effectively captures the global semantic information via the self-attention and performs local feature extraction through shift convolution simultaneously. Second, we adopt a gating mechanism in the feed-forward network to enhance the non-linear feature transformation. The gating mechanism is formulated as the element-wise multiplication of two parallel linear layers. Important features can be highlighted, leading to high-quality representations against speckle noise. Extensive experiments conducted on three SAR datasets verify the superior performance of the proposed CAMixer. The source codes will be publicly available at https://github.com/summitgao/CAMixer .

View on arXiv
Comments on this paper