ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.11730
19
1

Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition

21 September 2023
Shuai Wang
Qibing Bai
Qi Liu
Jianwei Yu
Zhengyang Chen
Bing Han
Yan-min Qian
Haizhou Li
ArXivPDFHTML
Abstract

Current speaker recognition systems primarily rely on supervised approaches, constrained by the scale of labeled datasets. To boost the system performance, researchers leverage large pretrained models such as WavLM to transfer learned high-level features to the downstream speaker recognition task. However, this approach introduces extra parameters as the pretrained model remains in the inference stage. Another group of researchers directly apply self-supervised methods such as DINO to speaker embedding learning, yet they have not explored its potential on large-scale in-the-wild datasets. In this paper, we present the effectiveness of DINO training on the large-scale WenetSpeech dataset and its transferability in enhancing the supervised system performance on the CNCeleb dataset. Additionally, we introduce a confidence-based data filtering algorithm to remove unreliable data from the pretraining dataset, leading to better performance with less training data. The associated pretrained models, confidence files, pretraining and finetuning scripts will be made available in the Wespeaker toolkit.

View on arXiv
Comments on this paper