ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.11726
17
1

Turaco: Complexity-Guided Data Sampling for Training Neural Surrogates of Programs

21 September 2023
Alex Renda
Yi Ding
Michael Carbin
ArXivPDFHTML
Abstract

Programmers and researchers are increasingly developing surrogates of programs, models of a subset of the observable behavior of a given program, to solve a variety of software development challenges. Programmers train surrogates from measurements of the behavior of a program on a dataset of input examples. A key challenge of surrogate construction is determining what training data to use to train a surrogate of a given program. We present a methodology for sampling datasets to train neural-network-based surrogates of programs. We first characterize the proportion of data to sample from each region of a program's input space (corresponding to different execution paths of the program) based on the complexity of learning a surrogate of the corresponding execution path. We next provide a program analysis to determine the complexity of different paths in a program. We evaluate these results on a range of real-world programs, demonstrating that complexity-guided sampling results in empirical improvements in accuracy.

View on arXiv
Comments on this paper