81
0

Rendering stable features improves sampling-based localisation with Neural radiance fields

Abstract

Neural radiance fields (NeRFs) are a powerful tool for implicit scene representations, allowing for differentiable rendering and the ability to make predictions about previously unseen viewpoints. From a robotics perspective, there has been growing interest in object and scene-based localisation using NeRFs, with a number of recent works relying on sampling-based or Monte-Carlo localisation schemes. Unfortunately, these can be extremely computationally expensive, requiring multiple network forward passes to infer camera or object pose. To alleviate this, a variety of sampling strategies have been applied, many relying on keypoint recognition techniques from classical computer vision. This work conducts a systematic empirical comparison of these approaches and shows that in contrast to conventional feature matching approaches for geometry-based localisation, sampling-based localisation using NeRFs benefits significantly from stable features. Results show that rendering stable features can result in a tenfold reduction in the number of forward passes required, a significant speed improvement.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.