64
23

Generative Agent-Based Modeling: Unveiling Social System Dynamics through Coupling Mechanistic Models with Generative Artificial Intelligence

Abstract

We discuss the emerging new opportunity for building feedback-rich computational models of social systems using generative artificial intelligence. Referred to as Generative Agent-Based Models (GABMs), such individual-level models utilize large language models such as ChatGPT to represent human decision-making in social settings. We provide a GABM case in which human behavior can be incorporated in simulation models by coupling a mechanistic model of human interactions with a pre-trained large language model. This is achieved by introducing a simple GABM of social norm diffusion in an organization. For educational purposes, the model is intentionally kept simple. We examine a wide range of scenarios and the sensitivity of the results to several changes in the prompt. We hope the article and the model serve as a guide for building useful diffusion models that include realistic human reasoning and decision-making.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.