ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.10426
27
3

Multi-Object Graph Affordance Network: Goal-Oriented Planning through Learned Compound Object Affordances

19 September 2023
Tuba Girgin
Emre Ugur
ArXivPDFHTML
Abstract

Learning object affordances is an effective tool in the field of robot learning. While the data-driven models investigate affordances of single or paired objects, there is a gap in the exploration of affordances of compound objects composed of an arbitrary number of objects. We propose the Multi-Object Graph Affordance Network which models complex compound object affordances by learning the outcomes of robot actions that facilitate interactions between an object and a compound. Given the depth images of the objects, the object features are extracted via convolution operations and encoded in the nodes of graph neural networks. Graph convolution operations are used to encode the state of the compounds, which are used as input to decoders to predict the outcome of the object-compound interactions. After learning the compound object affordances, given different tasks, the learned outcome predictors are used to plan sequences of stack actions that involve stacking objects on top of each other, inserting smaller objects into larger containers and passing through ring-like objects through poles. We showed that our system successfully modeled the affordances of compound objects that include concave and convex objects, in both simulated and real-world environments. We benchmarked our system with a baseline model to highlight its advantages.

View on arXiv
Comments on this paper