37
0

Federated Learning in Temporal Heterogeneity

Abstract

In this work, we explored federated learning in temporal heterogeneity across clients. We observed that global model obtained by \texttt{FedAvg} trained with fixed-length sequences shows faster convergence than varying-length sequences. We proposed methods to mitigate temporal heterogeneity for efficient federated learning based on the empirical observation.

View on arXiv
Comments on this paper