ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.08794
16
5

Privacy-preserving Early Detection of Epileptic Seizures in Videos

15 September 2023
Deval Mehta
Shobi Sivathamboo
Hugh Simpson
Patrick Kwan
Terence OBrien
Zongyuan Ge
ArXivPDFHTML
Abstract

In this work, we contribute towards the development of video-based epileptic seizure classification by introducing a novel framework (SETR-PKD), which could achieve privacy-preserved early detection of seizures in videos. Specifically, our framework has two significant components - (1) It is built upon optical flow features extracted from the video of a seizure, which encodes the seizure motion semiotics while preserving the privacy of the patient; (2) It utilizes a transformer based progressive knowledge distillation, where the knowledge is gradually distilled from networks trained on a longer portion of video samples to the ones which will operate on shorter portions. Thus, our proposed framework addresses the limitations of the current approaches which compromise the privacy of the patients by directly operating on the RGB video of a seizure as well as impede real-time detection of a seizure by utilizing the full video sample to make a prediction. Our SETR-PKD framework could detect tonic-clonic seizures (TCSs) in a privacy-preserving manner with an accuracy of 83.9% while they are only half-way into their progression. Our data and code is available at https://github.com/DevD1092/seizure-detection

View on arXiv
Comments on this paper