ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.08385
32
1

A Unified View Between Tensor Hypergraph Neural Networks And Signal Denoising

15 September 2023
Fuli Wang
K. Pena-Pena
Wei Qian
Gonzalo R. Arce
ArXivPDFHTML
Abstract

Hypergraph Neural networks (HyperGNNs) and hypergraph signal denoising (HyperGSD) are two fundamental topics in higher-order network modeling. Understanding the connection between these two domains is particularly useful for designing novel HyperGNNs from a HyperGSD perspective, and vice versa. In particular, the tensor-hypergraph convolutional network (T-HGCN) has emerged as a powerful architecture for preserving higher-order interactions on hypergraphs, and this work shows an equivalence relation between a HyperGSD problem and the T-HGCN. Inspired by this intriguing result, we further design a tensor-hypergraph iterative network (T-HGIN) based on the HyperGSD problem, which takes advantage of a multi-step updating scheme in every single layer. Numerical experiments are conducted to show the promising applications of the proposed T-HGIN approach.

View on arXiv
Comments on this paper