ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.06941
28
1

DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision

13 September 2023
Xiangchen Yin
Zhenda Yu
Xin Gao
Ran Ju
    ViT
ArXivPDFHTML
Abstract

Low-light image enhancement restores the colors and details of a single image and improves high-level visual tasks. However, restoring the lost details in the dark area is still a challenge relying only on the RGB domain. In this paper, we delve into frequency as a new clue into the model and propose a DCT-driven enhancement transformer (DEFormer) framework. First, we propose a learnable frequency branch (LFB) for frequency enhancement contains DCT processing and curvature-based frequency enhancement (CFE) to represent frequency features. Additionally, we propose a cross domain fusion (CDF) to reduce the differences between the RGB domain and the frequency domain. Our DEFormer has achieved superior results on the LOL and MIT-Adobe FiveK datasets, improving the dark detection performance.

View on arXiv
Comments on this paper