ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.06723
19
0

PIAVE: A Pose-Invariant Audio-Visual Speaker Extraction Network

13 September 2023
Qinghua Liu
Meng Ge
Zhizheng Wu
Haizhou Li
ArXivPDFHTML
Abstract

It is common in everyday spoken communication that we look at the turning head of a talker to listen to his/her voice. Humans see the talker to listen better, so do machines. However, previous studies on audio-visual speaker extraction have not effectively handled the varying talking face. This paper studies how to take full advantage of the varying talking face. We propose a Pose-Invariant Audio-Visual Speaker Extraction Network (PIAVE) that incorporates an additional pose-invariant view to improve audio-visual speaker extraction. Specifically, we generate the pose-invariant view from each original pose orientation, which enables the model to receive a consistent frontal view of the talker regardless of his/her head pose, therefore, forming a multi-view visual input for the speaker. Experiments on the multi-view MEAD and in-the-wild LRS3 dataset demonstrate that PIAVE outperforms the state-of-the-art and is more robust to pose variations.

View on arXiv
Comments on this paper