ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.05521
11
0

Re-formalization of Individual Fairness

11 September 2023
Toshihiro Kamishima
    FaML
ArXivPDFHTML
Abstract

The notion of individual fairness is a formalization of an ethical principle, "Treating like cases alike," which has been argued such as by Aristotle. In a fairness-aware machine learning context, Dwork et al. firstly formalized the notion. In their formalization, a similar pair of data in an unfair space should be mapped to similar positions in a fair space. We propose to re-formalize individual fairness by the statistical independence conditioned by individuals. This re-formalization has the following merits. First, our formalization is compatible with that of Dwork et al. Second, our formalization enables to combine individual fairness with the fairness notion, equalized odds or sufficiency, as well as statistical parity. Third, though their formalization implicitly assumes a pre-process approach for making fair prediction, our formalization is applicable to an in-process or post-process approach.

View on arXiv
Comments on this paper