43
2

Non-linear dimension reduction in factor-augmented vector autoregressions

Abstract

This paper introduces non-linear dimension reduction in factor-augmented vector autoregressions to analyze the effects of different economic shocks. I argue that controlling for non-linearities between a large-dimensional dataset and the latent factors is particularly useful during turbulent times of the business cycle. In simulations, I show that non-linear dimension reduction techniques yield good forecasting performance, especially when data is highly volatile. In an empirical application, I identify a monetary policy as well as an uncertainty shock excluding and including observations of the COVID-19 pandemic. Those two applications suggest that the non-linear FAVAR approaches are capable of dealing with the large outliers caused by the COVID-19 pandemic and yield reliable results in both scenarios.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.