39
11

Evaluation and Enhancement of Semantic Grounding in Large Vision-Language Models

Abstract

Large Vision-Language Models (LVLMs) offer remarkable benefits for a variety of vision-language tasks. However, a challenge hindering their application in real-world scenarios, particularly regarding safety, robustness, and reliability, is their constrained semantic grounding ability, which pertains to connecting language to the physical-world entities or concepts referenced in images. Therefore, a crucial need arises for a comprehensive study to assess the semantic grounding ability of widely used LVLMs. Despite the significance, sufficient investigation in this direction is currently lacking. Our work bridges this gap by designing a pipeline for generating large-scale evaluation datasets covering fine-grained semantic information, such as color, number, material, etc., along with a thorough assessment of seven popular LVLMs' semantic grounding ability. Results highlight prevalent misgrounding across various aspects and degrees. To address this issue, we propose a data-centric enhancement method that aims to improve LVLMs' semantic grounding ability through multimodal instruction tuning on fine-grained conversations. Experiments on enhanced LVLMs demonstrate notable improvements in addressing misgrounding issues.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.