16
2

MVD:A Novel Methodology and Dataset for Acoustic Vehicle Type Classification

Abstract

Rising urban populations have led to a surge in vehicle use and made traffic monitoring and management indispensable. Acoustic traffic monitoring (ATM) offers a cost-effective and efficient alternative to more computationally expensive methods of monitoring traffic such as those involving computer vision technologies. In this paper, we present MVD and MVDA: two open datasets for the development of acoustic traffic monitoring and vehicle-type classification algorithms, which contain audio recordings of moving vehicles. The dataset contain four classes- Trucks, Cars, Motorbikes, and a No-vehicle class. Additionally, we propose a novel and efficient way to accurately classify these acoustic signals using cepstrum and spectrum based local and global audio features, and a multi-input neural network. Experimental results show that our methodology improves upon the established baselines of previous works and achieves an accuracy of 91.98% and 96.66% on MVD and MVDA Datasets, respectively. Finally, the proposed model was deployed through an Android application to make it accessible for testing and demonstrate its efficacy.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.