ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.03401
32
0

Reasonable Anomaly Detection in Long Sequences

6 September 2023
Yalong Jiang
Changkang Li
    AI4TS
ArXivPDFHTML
Abstract

Video anomaly detection is a challenging task due to the lack in approaches for representing samples. The visual representations of most existing approaches are limited by short-term sequences of observations which cannot provide enough clues for achieving reasonable detections. In this paper, we propose to completely represent the motion patterns of objects by learning from long-term sequences. Firstly, a Stacked State Machine (SSM) model is proposed to represent the temporal dependencies which are consistent across long-range observations. Then SSM model functions in predicting future states based on past ones, the divergence between the predictions with inherent normal patterns and observed ones determines anomalies which violate normal motion patterns. Extensive experiments are carried out to evaluate the proposed approach on the dataset and existing ones. Improvements over state-of-the-art methods can be observed. Our code is available at https://github.com/AllenYLJiang/Anomaly-Detection-in-Sequences.

View on arXiv
Comments on this paper