37
2

Hindering Adversarial Attacks with Multiple Encrypted Patch Embeddings

Isao Echizen
Hitoshi Kiya
Abstract

In this paper, we propose a new key-based defense focusing on both efficiency and robustness. Although the previous key-based defense seems effective in defending against adversarial examples, carefully designed adaptive attacks can bypass the previous defense, and it is difficult to train the previous defense on large datasets like ImageNet. We build upon the previous defense with two major improvements: (1) efficient training and (2) optional randomization. The proposed defense utilizes one or more secret patch embeddings and classifier heads with a pre-trained isotropic network. When more than one secret embeddings are used, the proposed defense enables randomization on inference. Experiments were carried out on the ImageNet dataset, and the proposed defense was evaluated against an arsenal of state-of-the-art attacks, including adaptive ones. The results show that the proposed defense achieves a high robust accuracy and a comparable clean accuracy compared to the previous key-based defense.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.