ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.00993
17
0
v1v2 (latest)

A Boosted Machine Learning Framework for the Improvement of Phase and Crystal Structure Prediction of High Entropy Alloys Using Thermodynamic and Configurational Parameters

2 September 2023
Debsundar Dey
Suchandan Das
Anik Pal
Santanu Dey
Chandan Kumar Raul
Arghya Chatterjee
    AI4CE
ArXiv (abs)PDFHTML
Abstract

The reason behind the remarkable properties of High-Entropy Alloys (HEAs) is rooted in the diverse phases and the crystal structures they contain. In the realm of material informatics, employing machine learning (ML) techniques to classify phases and crystal structures of HEAs has gained considerable significance. In this study, we assembled a new collection of 1345 HEAs with varying compositions to predict phases. Within this collection, there were 705 sets of data that were utilized to predict the crystal structures with the help of thermodynamics and electronic configuration. Our study introduces a methodical framework i.e., the Pearson correlation coefficient that helps in selecting the strongly co-related features to increase the prediction accuracy. This study employed five distinct boosting algorithms to predict phases and crystal structures, offering an enhanced guideline for improving the accuracy of these predictions. Among all these algorithms, XGBoost gives the highest accuracy of prediction (94.05%) for phases and LightGBM gives the highest accuracy of prediction of crystal structure of the phases (90.07%). The quantification of the influence exerted by parameters on the model's accuracy was conducted and a new approach was made to elucidate the contribution of individual parameters in the process of phase prediction and crystal structure prediction.

View on arXiv
Comments on this paper