ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.00155
88
26
v1v2 (latest)

LLM in the Shell: Generative Honeypots

31 August 2023
Muris Sladić
Veronica Valeros
C. Catania
Sebastian Garcia
ArXiv (abs)PDFHTML
Abstract

Honeypots are essential tools in cybersecurity. However, most of them (even the high-interaction ones) lack the required realism to engage and fool human attackers. This limitation makes them easily discernible, hindering their effectiveness. This work introduces a novel method to create dynamic and realistic software honeypots based on Large Language Models. Preliminary results indicate that LLMs can create credible and dynamic honeypots capable of addressing important limitations of previous honeypots, such as deterministic responses, lack of adaptability, etc. We evaluated the realism of each command by conducting an experiment with human attackers who needed to say if the answer from the honeypot was fake or not. Our proposed honeypot, called shelLM, reached an accuracy rate of 0.92.

View on arXiv
Comments on this paper