ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.16441
22
2

Contrastive Representation Learning Based on Multiple Node-centered Subgraphs

31 August 2023
Dong Li
Wenjun Wang
Minglai Shao
Chen Zhao
    SSL
ArXivPDFHTML
Abstract

As the basic element of graph-structured data, node has been recognized as the main object of study in graph representation learning. A single node intuitively has multiple node-centered subgraphs from the whole graph (e.g., one person in a social network has multiple social circles based on his different relationships). We study this intuition under the framework of graph contrastive learning, and propose a multiple node-centered subgraphs contrastive representation learning method to learn node representation on graphs in a self-supervised way. Specifically, we carefully design a series of node-centered regional subgraphs of the central node. Then, the mutual information between different subgraphs of the same node is maximized by contrastive loss. Experiments on various real-world datasets and different downstream tasks demonstrate that our model has achieved state-of-the-art results.

View on arXiv
Comments on this paper