ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.16139
70
34

MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

30 August 2023
Jianning Li
Zongwei Zhou
Jiancheng Yang
Antonio Pepe
Christina Schwarz-Gsaxner
Gijs Luijten
Chongyu Qu
Tiezheng Zhang
Xiaoxi Chen
Wenxuan Li
Marek Wodzinski
Paul Friedrich
Kangxian Xie
Yuan Jin
Narmada Ambigapathy
Enrico Nasca
Naida Solak
G. Melito
Viet Duc Vu
A. R. Memon
Christopher Schlachta
Sandrine De Ribaupierre
Rajnikant Patel
Roy Eagleson
Xiaojun Chen
Heinrich Mächler
Jan Stefan Kirschke
Ezequiel de la Rosa
Patrich Ferndinand Christ
Hongwei Bran Li
David G. Ellis
M. Aizenberg
S. Gatidis
T. Kuestner
N. Shusharina
N. Heller
Vincent Andrearczyk
Adrien Depeursinge
M. Hatt
Anjany Sekuboyina
Maximilian Loeffler
Hans Liebl
Reuben Dorent
Tom Vercauteren
J. Shapey
Aaron Kujawa
S. Cornelissen
P. Langenhuizen
A. Ben-Hamadou
Ahmed Rekik
S. Pujades
Edmond Boyer
Federico Bolelli
C. Grana
Luca Lumetti
H. Salehi
Jun Ma
Yao Zhang
R. Gharleghi
S. Beier
Arcot Sowmya
E. Garza-Villarreal
T. Balducci
Diego Angeles-Valdez
R. Souza
Letícia Rittner
Richard Frayne
Yuanfeng Ji
Vincenzo Ferrari
S. Chatterjee
Florian Dubost
Stefanie Schreiber
Hendrik Mattern
Oliver Speck
Daniel Haehn
Christoph John
A. Nuernberger
J. Pedrosa
Carlos A. Ferreira
Guilherme Aresta
António Cunha
A. Campilho
Yannick R Suter
Jose A Garcia
A. Lalande
Vicky Vandenbossche
Aline Van Oevelen
Kate Duquesne
Hamza Mekhzoum
Jef Vandemeulebroucke
E. Audenaert
C. Krebs
T. V. Leeuwen
E. Vereecke
Hauke Heidemeyer
R. Roehrig
F. Hoelzle
V. Badeli
Kathrin Krieger
Matthias Gunzer
Jianxu Chen
Timo van Meegdenburg
Amin Dada
M. Balzer
Jana Fragemann
F. Jonske
Moritz Rempe
Stanislav Malorodov
F. Bahnsen
C. Seibold
A. Jaus
Zdravko Marinov
Paul F. Jaeger
Rainer Stiefelhagen
A. Santos
Mariana Lindo
André Ferreira
Victor Alves
Michael Kamp
Amr Abourayya
F. Nensa
Fabian Hoerst
Alexandra Brehmer
Lukas Heine
Yannik Hanusrichter
Martin Weßling
Marcel Dudda
L. Podleska
M. Fink
J. Keyl
Konstantinos Tserpes
Moon S. Kim
Shireen Y. Elhabian
H. Lamecker
Dženan Zukić
Beatriz Paniagua
Christian Wachinger
M. Urschler
Luc Duong
Jakob Wasserthal
P. Hoyer
Oliver Basu
T. Maal
M. Witjes
Gregor Schiele
Ti-chiun Chang
Seyed-Ahmad Ahmadi
Ping Luo
Bjoern Menze
M. Reyes
Thomas M. Deserno
Christos Davatzikos
B. Puladi
Pascal Fua
Alan Yuille
Jens Kleesiek
Jan Egger
    MedIm
    3DH
ArXivPDFHTML
Abstract

Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedback

View on arXiv
Comments on this paper