ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.13869
17
0

A More Scalable Sparse Dynamic Data Exchange

26 August 2023
Andrew Geyko
Gerald Collom
Derek Schafer
Patrick G. Bridges
Amanda Bienz
ArXivPDFHTML
Abstract

Parallel architectures are continually increasing in performance and scale, while underlying algorithmic infrastructure often fail to take full advantage of available compute power. Within the context of MPI, irregular communication patterns create bottlenecks in parallel applications. One common bottleneck is the sparse dynamic data exchange, often required when forming communication patterns within applications. There are a large variety of approaches for these dynamic exchanges, with optimizations implemented directly in parallel applications. This paper proposes a novel API within an MPI extension library, allowing for applications to utilize the variety of provided optimizations for sparse dynamic data exchange methods. Further, the paper presents novel locality-aware sparse dynamic data exchange algorithms. Finally, performance results show significant speedups up to 20x with the novel locality-aware algorithms.

View on arXiv
Comments on this paper