ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.11863
22
0

KinSPEAK: Improving speech recognition for Kinyarwanda via semi-supervised learning methods

23 August 2023
Antoine Nzeyimana
    SSL
ArXivPDFHTML
Abstract

Despite recent availability of large transcribed Kinyarwanda speech data, achieving robust speech recognition for Kinyarwanda is still challenging. In this work, we show that using self-supervised pre-training, following a simple curriculum schedule during fine-tuning and using semi-supervised learning to leverage large unlabelled speech data significantly improve speech recognition performance for Kinyarwanda. Our approach focuses on using public domain data only. A new studio-quality speech dataset is collected from a public website, then used to train a clean baseline model. The clean baseline model is then used to rank examples from a more diverse and noisy public dataset, defining a simple curriculum training schedule. Finally, we apply semi-supervised learning to label and learn from large unlabelled data in five successive generations. Our final model achieves 3.2% word error rate (WER) on the new dataset and 15.6% WER on Mozilla Common Voice benchmark, which is state-of-the-art to the best of our knowledge. Our experiments also indicate that using syllabic rather than character-based tokenization results in better speech recognition performance for Kinyarwanda.

View on arXiv
Comments on this paper