ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.11652
19
2

Accelerating Exact Combinatorial Optimization via RL-based Initialization -- A Case Study in Scheduling

19 August 2023
Jiaqi Yin
Cunxi Yu
ArXivPDFHTML
Abstract

Scheduling on dataflow graphs (also known as computation graphs) is an NP-hard problem. The traditional exact methods are limited by runtime complexity, while reinforcement learning (RL) and heuristic-based approaches struggle with determinism and solution quality. This research aims to develop an innovative approach that employs machine learning (ML) for addressing combinatorial optimization problems, using scheduling as a case study. The goal is to provide guarantees in optimality and determinism while maintaining the runtime cost of heuristic methods. Specifically, we introduce a novel two-phase RL-to-ILP scheduling framework, which includes three steps: 1) RL solver acts as coarse-grain scheduler, 2) solution relaxation and 3) exact solving via ILP. Our framework demonstrates the same scheduling performance compared with using exact scheduling methods while achieving up to 128 ×\times× speed improvements. This was conducted on actual EdgeTPU platforms, utilizing ImageNet DNN computation graphs as input. Additionally, the framework offers improved on-chip inference runtime and acceleration compared to the commercially available EdgeTPU compiler.

View on arXiv
Comments on this paper