31
7

Indonesian Automatic Speech Recognition with XLSR-53

Abstract

This study focuses on the development of Indonesian Automatic Speech Recognition (ASR) using the XLSR-53 pre-trained model, the XLSR stands for cross-lingual speech representations. The use of this XLSR-53 pre-trained model is to significantly reduce the amount of training data in non-English languages required to achieve a competitive Word Error Rate (WER). The total amount of data used in this study is 24 hours, 18 minutes, and 1 second: (1) TITML-IDN 14 hours and 31 minutes; (2) Magic Data 3 hours and 33 minutes; and (3) Common Voice 6 hours, 14 minutes, and 1 second. With a WER of 20%, the model built in this study can compete with similar models using the Common Voice dataset split test. WER can be decreased by around 8% using a language model, resulted in WER from 20% to 12%. Thus, the results of this study have succeeded in perfecting previous research in contributing to the creation of a better Indonesian ASR with a smaller amount of data.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.