ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.10281
22
6

The DKU-DUKEECE System for the Manipulation Region Location Task of ADD 2023

20 August 2023
Zexin Cai
Weiqing Wang
Yikang Wang
Ming Li
ArXivPDFHTML
Abstract

This paper introduces our system designed for Track 2, which focuses on locating manipulated regions, in the second Audio Deepfake Detection Challenge (ADD 2023). Our approach involves the utilization of multiple detection systems to identify splicing regions and determine their authenticity. Specifically, we train and integrate two frame-level systems: one for boundary detection and the other for deepfake detection. Additionally, we employ a third VAE model trained exclusively on genuine data to determine the authenticity of a given audio clip. Through the fusion of these three systems, our top-performing solution for the ADD challenge achieves an impressive 82.23% sentence accuracy and an F1 score of 60.66%. This results in a final ADD score of 0.6713, securing the first rank in Track 2 of ADD 2023.

View on arXiv
Comments on this paper