ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.09678
30
19

PoSynDA: Multi-Hypothesis Pose Synthesis Domain Adaptation for Robust 3D Human Pose Estimation

18 August 2023
Han-Wen Liu
Ju He
Zhi-Qi Cheng
Wangmeng Xiang
Q. Yang
Wenhao Chai
Gaoang Wang
Xueting Bao
Bin Luo
Yifeng Geng
Xuansong Xie
    DiffM
ArXivPDFHTML
Abstract

Existing 3D human pose estimators face challenges in adapting to new datasets due to the lack of 2D-3D pose pairs in training sets. To overcome this issue, we propose \textit{Multi-Hypothesis \textbf{P}ose \textbf{Syn}thesis \textbf{D}omain \textbf{A}daptation} (\textbf{PoSynDA}) framework to bridge this data disparity gap in target domain. Typically, PoSynDA uses a diffusion-inspired structure to simulate 3D pose distribution in the target domain. By incorporating a multi-hypothesis network, PoSynDA generates diverse pose hypotheses and aligns them with the target domain. To do this, it first utilizes target-specific source augmentation to obtain the target domain distribution data from the source domain by decoupling the scale and position parameters. The process is then further refined through the teacher-student paradigm and low-rank adaptation. With extensive comparison of benchmarks such as Human3.6M and MPI-INF-3DHP, PoSynDA demonstrates competitive performance, even comparable to the target-trained MixSTE model\cite{zhang2022mixste}. This work paves the way for the practical application of 3D human pose estimation in unseen domains. The code is available at https://github.com/hbing-l/PoSynDA.

View on arXiv
Comments on this paper