ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.09556
17
0

A Principle for Global Optimization with Gradients

18 August 2023
Nils Müller
ArXivPDFHTML
Abstract

This work demonstrates the utility of gradients for the global optimization of certain differentiable functions with many suboptimal local minima. To this end, a principle for generating search directions from non-local quadratic approximants based on gradients of the objective function is analyzed. Experiments measure the quality of non-local search directions as well as the performance of a proposed simplistic algorithm, of the covariance matrix adaptation evolution strategy (CMA-ES), and of a randomly reinitialized Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

View on arXiv
Comments on this paper