ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.08886
21
0

Dual Gauss-Newton Directions for Deep Learning

17 August 2023
Vincent Roulet
Mathieu Blondel
    ODL
ArXivPDFHTML
Abstract

Inspired by Gauss-Newton-like methods, we study the benefit of leveraging the structure of deep learning objectives, namely, the composition of a convex loss function and of a nonlinear network, in order to derive better direction oracles than stochastic gradients, based on the idea of partial linearization. In a departure from previous works, we propose to compute such direction oracles via their dual formulation, leading to both computational benefits and new insights. We demonstrate that the resulting oracles define descent directions that can be used as a drop-in replacement for stochastic gradients, in existing optimization algorithms. We empirically study the advantage of using the dual formulation as well as the computational trade-offs involved in the computation of such oracles.

View on arXiv
Comments on this paper