ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.08334
14
2

Learning logic programs by discovering higher-order abstractions

16 August 2023
Céline Hocquette
Sebastijan Dumancic
Andrew Cropper
ArXivPDFHTML
Abstract

We introduce the higher-order refactoring problem, where the goal is to compress a logic program by discovering higher-order abstractions, such as map, filter, and fold. We implement our approach in Stevie, which formulates the refactoring problem as a constraint optimisation problem. Our experiments on multiple domains, including program synthesis and visual reasoning, show that refactoring can improve the learning performance of an inductive logic programming system, specifically improving predictive accuracies by 27% and reducing learning times by 47%. We also show that Stevie can discover abstractions that transfer to multiple domains.

View on arXiv
Comments on this paper