ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.07977
27
3

Dynamic Attention-Guided Diffusion for Image Super-Resolution

15 August 2023
Brian B. Moser
Stanislav Frolov
Federico Raue
Sebastián M. Palacio
Andreas Dengel
    DiffM
ArXivPDFHTML
Abstract

Diffusion models in image Super-Resolution (SR) treat all image regions with uniform intensity, which risks compromising the overall image quality. To address this, we introduce "You Only Diffuse Areas" (YODA), a dynamic attention-guided diffusion method for image SR. YODA selectively focuses on spatial regions using attention maps derived from the low-resolution image and the current time step in the diffusion process. This time-dependent targeting enables a more efficient conversion to high-resolution outputs by focusing on areas that benefit the most from the iterative refinement process, i.e., detail-rich objects. We empirically validate YODA by extending leading diffusion-based methods SR3 and SRDiff. Our experiments demonstrate new state-of-the-art performance in face and general SR across PSNR, SSIM, and LPIPS metrics. A notable finding is YODA's stabilization effect by reducing color shifts, especially when training with small batch sizes.

View on arXiv
Comments on this paper