38
0

O-1: Self-training with Oracle and 1-best Hypothesis

M. Baskar
Andrew Rosenberg
Bhuvana Ramabhadran
Kartik Audhkhasi
Abstract

We introduce O-1, a new self-training objective to reduce training bias and unify training and evaluation metrics for speech recognition. O-1 is a faster variant of Expected Minimum Bayes Risk (EMBR), that boosts the oracle hypothesis and can accommodate both supervised and unsupervised data. We demonstrate the effectiveness of our approach in terms of recognition on publicly available SpeechStew datasets and a large-scale, in-house data set. On Speechstew, the O-1 objective closes the gap between the actual and oracle performance by 80\% relative compared to EMBR which bridges the gap by 43\% relative. O-1 achieves 13\% to 25\% relative improvement over EMBR on the various datasets that SpeechStew comprises of, and a 12\% relative gap reduction with respect to the oracle WER over EMBR training on the in-house dataset. Overall, O-1 results in a 9\% relative improvement in WER over EMBR, thereby speaking to the scalability of the proposed objective for large-scale datasets.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.