ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.05281
389
0
v1v2 (latest)

Investigating disaster response through social media data and the Susceptible-Infected-Recovered (SIR) model: A case study of 2020 Western U.S. wildfire season

10 August 2023
Zihui Ma
Lingyao Li
Libby Hemphill
G. Baecher
ArXiv (abs)PDFHTML
Abstract

Effective disaster response is critical for affected communities. Responders and decision-makers would benefit from reliable, timely measures of the issues impacting their communities during a disaster, and social media offers a potentially rich data source. Social media can reflect public concerns and demands during a disaster, offering valuable insights for decision-makers to understand evolving situations and optimize resource allocation. We used Bidirectional Encoder Representations from Transformers (BERT) topic modeling to cluster topics from Twitter data. Then, we conducted a temporal-spatial analysis to examine the distribution of these topics across different regions during the 2020 western U.S. wildfire season. Our results show that Twitter users mainly focused on three topics:"health impact," "damage," and "evacuation." We used the Susceptible-Infected-Recovered (SIR) theory to explore the magnitude and velocity of topic diffusion on Twitter. The results displayed a clear relationship between topic trends and wildfire propagation patterns. The estimated parameters obtained from the SIR model in selected cities revealed that residents exhibited a high level of several concerns during the wildfire. Our study details how the SIR model and topic modeling using social media data can provide decision-makers with a quantitative approach to measure disaster response and support their decision-making processes.

View on arXiv
Comments on this paper