ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.04844
14
0

Scalability of Message Encoding Techniques for Continuous Communication Learned with Multi-Agent Reinforcement Learning

9 August 2023
Astrid Vanneste
Thomas Somers
Simon Vanneste
Kevin Mets
Tom De Schepper
Siegfried Mercelis
P. Hellinckx
ArXivPDFHTML
Abstract

Many multi-agent systems require inter-agent communication to properly achieve their goal. By learning the communication protocol alongside the action protocol using multi-agent reinforcement learning techniques, the agents gain the flexibility to determine which information should be shared. However, when the number of agents increases we need to create an encoding of the information contained in these messages. In this paper, we investigate the effect of increasing the amount of information that should be contained in a message and increasing the number of agents. We evaluate these effects on two different message encoding methods, the mean message encoder and the attention message encoder. We perform our experiments on a matrix environment. Surprisingly, our results show that the mean message encoder consistently outperforms the attention message encoder. Therefore, we analyse the communication protocol used by the agents that use the mean message encoder and can conclude that the agents use a combination of an exponential and a logarithmic function in their communication policy to avoid the loss of important information after applying the mean message encoder.

View on arXiv
Comments on this paper