ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.01938
16
0

Online Multi-Task Learning with Recursive Least Squares and Recursive Kernel Methods

3 August 2023
Gabriel R. Lencione
F. J. Zuben
ArXivPDFHTML
Abstract

This paper introduces two novel approaches for Online Multi-Task Learning (MTL) Regression Problems. We employ a high performance graph-based MTL formulation and develop two alternative recursive versions based on the Weighted Recursive Least Squares (WRLS) and the Online Sparse Least Squares Support Vector Regression (OSLSSVR) strategies. Adopting task-stacking transformations, we demonstrate the existence of a single matrix incorporating the relationship of multiple tasks and providing structural information to be embodied by the MT-WRLS method in its initialization procedure and by the MT-OSLSSVR in its multi-task kernel function. Contrasting the existing literature, which is mostly based on Online Gradient Descent (OGD) or cubic inexact approaches, we achieve exact and approximate recursions with quadratic per-instance cost on the dimension of the input space (MT-WRLS) or on the size of the dictionary of instances (MT-OSLSSVR). We compare our online MTL methods to other contenders in a real-world wind speed forecasting case study, evidencing the significant gain in performance of both proposed approaches.

View on arXiv
Comments on this paper