ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.01776
14
5

Does Correction Remain A Problem For Large Language Models?

3 August 2023
Xiaowu Zhang
Xiaotian Zhang
Cheng Yang
Hang Yan
Xipeng Qiu
    LRM
    KELM
ArXivPDFHTML
Abstract

As large language models, such as GPT, continue to advance the capabilities of natural language processing (NLP), the question arises: does the problem of correction still persist? This paper investigates the role of correction in the context of large language models by conducting two experiments. The first experiment focuses on correction as a standalone task, employing few-shot learning techniques with GPT-like models for error correction. The second experiment explores the notion of correction as a preparatory task for other NLP tasks, examining whether large language models can tolerate and perform adequately on texts containing certain levels of noise or errors. By addressing these experiments, we aim to shed light on the significance of correction in the era of large language models and its implications for various NLP applications.

View on arXiv
Comments on this paper