ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.01097
21
10

Spatio-Temporal Branching for Motion Prediction using Motion Increments

2 August 2023
Jiexin Wang
Yujie Zhou
Wenwen Qiang
Ying Ba
Bing-Huang Su
Ji-Rong Wen
    3DH
ArXivPDFHTML
Abstract

Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications, but it remains a challenging task due to the stochastic and aperiodic nature of future poses. Traditional methods rely on hand-crafted features and machine learning techniques, which often struggle to model the complex dynamics of human motion. Recent deep learning-based methods have achieved success by learning spatio-temporal representations of motion, but these models often overlook the reliability of motion data. Additionally, the temporal and spatial dependencies of skeleton nodes are distinct. The temporal relationship captures motion information over time, while the spatial relationship describes body structure and the relationships between different nodes. In this paper, we propose a novel spatio-temporal branching network using incremental information for HMP, which decouples the learning of temporal-domain and spatial-domain features, extracts more motion information, and achieves complementary cross-domain knowledge learning through knowledge distillation. Our approach effectively reduces noise interference and provides more expressive information for characterizing motion by separately extracting temporal and spatial features. We evaluate our approach on standard HMP benchmarks and outperform state-of-the-art methods in terms of prediction accuracy.

View on arXiv
Comments on this paper