ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.16847
27
17

CroSSL: Cross-modal Self-Supervised Learning for Time-series through Latent Masking

31 July 2023
Shohreh Deldari
Dimitris Spathis
Mohammad Malekzadeh
F. Kawsar
Flora D. Salim
Akhil Mathur
ArXivPDFHTML
Abstract

Limited availability of labeled data for machine learning on multimodal time-series extensively hampers progress in the field. Self-supervised learning (SSL) is a promising approach to learning data representations without relying on labels. However, existing SSL methods require expensive computations of negative pairs and are typically designed for single modalities, which limits their versatility. We introduce CroSSL (Cross-modal SSL), which puts forward two novel concepts: masking intermediate embeddings produced by modality-specific encoders, and their aggregation into a global embedding through a cross-modal aggregator that can be fed to down-stream classifiers. CroSSL allows for handling missing modalities and end-to-end cross-modal learning without requiring prior data preprocessing for handling missing inputs or negative-pair sampling for contrastive learning. We evaluate our method on a wide range of data, including motion sensors such as accelerometers or gyroscopes and biosignals (heart rate, electroencephalograms, electromyograms, electrooculograms, and electrodermal) to investigate the impact of masking ratios and masking strategies for various data types and the robustness of the learned representations to missing data. Overall, CroSSL outperforms previous SSL and supervised benchmarks using minimal labeled data, and also sheds light on how latent masking can improve cross-modal learning. Our code is open-sourced at https://github.com/dr-bell/CroSSL.

View on arXiv
Comments on this paper