ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.16579
33
28

Contrastive Conditional Latent Diffusion for Audio-visual Segmentation

31 July 2023
Yuxin Mao
Jing Zhang
Mochu Xiang
Yun-Qiu Lv
Yiran Zhong
Yuchao Dai
    DiffM
ArXivPDFHTML
Abstract

We propose a latent diffusion model with contrastive learning for audio-visual segmentation (AVS) to extensively explore the contribution of audio. We interpret AVS as a conditional generation task, where audio is defined as the conditional variable for sound producer(s) segmentation. With our new interpretation, it is especially necessary to model the correlation between audio and the final segmentation map to ensure its contribution. We introduce a latent diffusion model to our framework to achieve semantic-correlated representation learning. Specifically, our diffusion model learns the conditional generation process of the ground-truth segmentation map, leading to ground-truth aware inference when we perform the denoising process at the test stage. As a conditional diffusion model, we argue it is essential to ensure that the conditional variable contributes to model output. We then introduce contrastive learning to our framework to learn audio-visual correspondence, which is proven consistent with maximizing the mutual information between model prediction and the audio data. In this way, our latent diffusion model via contrastive learning explicitly maximizes the contribution of audio for AVS. Experimental results on the benchmark dataset verify the effectiveness of our solution. Code and results are online via our project page: https://github.com/OpenNLPLab/DiffusionAVS.

View on arXiv
Comments on this paper