ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.14294
15
0

Unraveling the Complexity of Splitting Sequential Data: Tackling Challenges in Video and Time Series Analysis

26 July 2023
Diego Botache
Kristina Dingel
Rico Huhnstock
A. Ehresmann
Bernhard Sick
ArXivPDFHTML
Abstract

Splitting of sequential data, such as videos and time series, is an essential step in various data analysis tasks, including object tracking and anomaly detection. However, splitting sequential data presents a variety of challenges that can impact the accuracy and reliability of subsequent analyses. This concept article examines the challenges associated with splitting sequential data, including data acquisition, data representation, split ratio selection, setting up quality criteria, and choosing suitable selection strategies. We explore these challenges through two real-world examples: motor test benches and particle tracking in liquids.

View on arXiv
Comments on this paper