ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.14012
26
3

MCMC-Correction of Score-Based Diffusion Models for Model Composition

26 July 2023
Anders Sjöberg
Jakob Lindqvist
Magnus Önnheim
Mats Jirstrand
Lennart Svensson
    DiffM
ArXivPDFHTML
Abstract

Diffusion models can be parameterised in terms of either a score or an energy function. An energy parameterisation is appealing since it enables an extended sampling procedure with a Metropolis--Hastings (MH) correction step, based on the change in total energy in the proposed samples. Improved sampling is important for model compositions, where off-the-shelf models are combined with each other, in order to sample from new distributions. For model composition, score-based diffusions have the advantages that they are popular and that many pre-trained models are readily available. However, this parameterisation does not, in general, define an energy, and the MH acceptance probability is therefore unavailable, and generally ill-defined. We propose keeping the score parameterisation and computing an acceptance probability inspired by energy-based models through line integration of the score function. This allows us to reuse existing diffusion models and still combine the reverse process with various Markov-Chain Monte Carlo (MCMC) methods. We evaluate our method using numerical experiments and find that score-parameterised versions of the MCMC samplers can achieve similar improvements to the corresponding energy parameterisation.

View on arXiv
Comments on this paper