ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.12533
31
52

PUMA: Secure Inference of LLaMA-7B in Five Minutes

24 July 2023
Ye Dong
Wen-jie Lu
Yancheng Zheng
Haoqi Wu
Derun Zhao
Jin Tan
Zhicong Huang
Cheng Hong
Tao Wei
Wen-Chang Cheng
ArXivPDFHTML
Abstract

With ChatGPT as a representative, tons of companies have began to provide services based on large Transformers models. However, using such a service inevitably leak users' prompts to the model provider. Previous studies have studied secure inference for Transformer models using secure multiparty computation (MPC), where model parameters and clients' prompts are kept secret. Despite this, these frameworks are still limited in terms of model performance, efficiency, and deployment. To address these limitations, we propose framework PUMA to enable fast and secure Transformer model inference. Our framework designs high quality approximations for expensive functions such as GeLU and softmax, and significantly reduce the cost of secure inference while preserving the model performance. Additionally, we design secure Embedding and LayerNorm procedures that faithfully implement the desired functionality without undermining the Transformer architecture. PUMA is about 2×2\times2× faster than the state-of-the-art framework MPCFORMER(ICLR 2023) and has similar accuracy as plaintext models without fine-tuning (which the previous works failed to achieve). PUMA can even evaluate LLaMA-7B in around 5 minutes to generate 1 token. To our best knowledge, this is the first time that a model with such a parameter size is able to be evaluated under MPC. PUMA has been open-sourced in the Github repository of SecretFlow-SPU.

View on arXiv
Comments on this paper