ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.11694
28
14

SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction and Drug Design

19 June 2023
Carl N. Edwards
Aakanksha Naik
Tushar Khot
Martin Burke
Heng Ji
Tom Hope
ArXivPDFHTML
Abstract

Predicting synergistic drug combinations can help accelerate discovery of cancer treatments, particularly therapies personalized to a patient's specific tumor via biopsied cells. In this paper, we propose a novel setting and models for in-context drug synergy learning. We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets. Our goal is to predict additional drug synergy relationships in that context. Inspired by recent work that pre-trains a GPT language model (LM) to "in-context learn" common function classes, we devise novel pre-training schemes that enable a GPT model to in-context learn "drug synergy functions". Our model -- which does not use any textual corpora, molecular fingerprints, protein interaction or any other domain-specific knowledge -- is able to achieve competitive results. We further integrate our in-context approach with a genetic algorithm to optimize model prompts and select synergy candidates to test after conducting a patient biopsy. Finally, we explore a novel task of inverse drug design which can potentially enable the design of drugs that synergize specifically to target a given patient's "personalized dataset". Our findings can potentially have an important impact on precision cancer medicine, and also raise intriguing questions on non-textual pre-training for LMs.

View on arXiv
Comments on this paper