LIVEJoin the current RTAI Connect sessionJoin now

51
120

An Iterative Wavelet Threshold for Signal Denoising

Abstract

This paper introduces an adaptive filtering process based on shrinking wavelet coefficients from the corresponding signal wavelet representation. The filtering procedure considers a threshold method determined by an iterative algorithm inspired by the control charts application, which is a tool of the statistical process control (SPC). The proposed method, called SpcShrink, is able to discriminate wavelet coefficients that significantly represent the signal of interest. The SpcShrink is algorithmically presented and numerically evaluated according to Monte Carlo simulations. Two empirical applications to real biomedical data filtering are also included and discussed. The SpcShrink shows superior performance when compared with competing algorithms.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.